Coherent Simulation of Correlated Electron Systems using Hole Spins in Germanium Quantum Dots

Coherent Simulation of Correlated Electron Systems using Hole Spins in Germanium Quantum Dots Abstract: Simulating condensed matter systems beyond the capabilities of classical computers is a promising avenue for advancing our understanding of quantum phenomena. Quantum dots and donors in semiconductor technology offer a natural platform for implementing quantum simulation. While various material platforms have been explored for studying interacting charge and spin states, the challenge of decoherence has limited the realization of coherent quantum dynamics. In this study, we introduce quantum simulation using hole spins in germanium quantum dots, showcasing extensive and coherent control over multi-spin states in isolated, paired, and fully coupled quantum dots. Specifically, we focus on simulating resonating valence bonds (RVBs) and measure the evolution between singlet product states, which remains coherent over many periods. Additionally, we demonstrate the realization of fou...