Hypothèse De Reimann - Fonctions | Mathématique Série 1

l'hypothèse de Riemann est une conjecture formulée en 1859 par le mathématicien allemand Bernhard Riemann.
Elle dit que les zéros non triviaux de la fonction zêta de Riemann ont tous pour partie réelle 1/2. Sa démonstration améliorerait la connaissance de la répartition des nombres premiers .

Cette conjecture constitue l'un des problèmes non résolus les plus importants des mathématiques du début du XXIe siècle : elle est l'un des vingt-trois fameux problèmes de Hilbert proposés en 1900, l'un des sept problèmes du prix du millénaire et l'un des dix-huit problèmes de Smale. Comme pour les six autres problèmes du millénaire, l'énoncé exact de la conjecture à démontrer est accompagné d'une description détaillée, fournissant de nombreuses informations sur l'historique du problème, son importance, et l'état des travaux à son sujet ; beaucoup des remarques informelles de cette page en proviennent.

La fonction zêta de Riemann

Article détaillé : fonction zêta de Riemann.

La fonction zêta de Riemann est définie pour tous les nombres complexes s de partie réelle strictement supérieure à 1 par

Leonhard Euler l’introduit (sans lui donner de nom) uniquement pour des valeurs réelles de l’argument (mais aussi pour ), en liaison, entre autres, avec sa solution du Problème de Bâle . Il montre qu'elle est donnée par le produit eulérienoù le produit infini porte sur tous les nombres premiers p, mais ne converge pas forcément: en effet dans le Théorème 7 de son article Euler donne une démonstration de cette formule pour le cas  (tout en notant que ), et il l’établit en général dans son Théorème 8. C'est ce résultat qui explique l'intérêt de la fonction zêta dans l'étude de la répartition des nombres premiers (Euler déduit par exemple du cas , dans le Théorème 19 du même article que la série des inverses des nombres premiers est divergente).

Le résultat reste bien entendu valable lorsque l’argument  est complexe.

L'hypothèse de Riemann porte sur les zéros de cette fonction en dehors du domaine de convergence qu'on vient de voir, ce qui peut sembler n'avoir aucun sens. L'explication tient dans la notion de prolongement analystique : on peut démontrer qu'il existe une fonction holomorphe unique définie pour tout complexe (différent de 1, où elle présente un pôle simple) et coïncidant avec zêta pour les valeurs où cette dernière est définie ; on note encore ζ(s) cette nouvelle fonction.

L'une des techniques pour construire ce prolongement est la suivante.

  • Il est d'abord facile de vérifier que, pour s de partie réelle > 1, on a :or la série de droite (appelée fonction êta de Dirichlet) converge pour tout s de partie réelle strictement positive. On prolonge ainsi ζ à tous les s ≠ 1 de partie réelle > 0 (même ceux de la forme 1 + 2ikπ/ln(2) avec k entier non nul, car on montre qu'en ces points, la fonction possède une limite finie).
  • On montre ensuite, pour tout s de partie réelle strictement comprise entre 0 et 1, l'identité fonctionnelleoù Γ est la fonction Gamma d'Euler. Il devient alors possible d'utiliser cette formule pour définir zêta pour tout s de partie réelle négative (avec ζ(0) = –1/2 par passage à la limite).

On en déduit que les entiers pairs strictement négatifs sont des zéros de zêta (appelés zéros triviaux) et que les zéros non triviaux sont symétriques par rapport à l'axe Re(s) = 1/2 et sont tous de partie réelle comprise, au sens large, entre 0 et 1 ; cette région du plan complexe s'appelle la bande critique.

De plus, il n'y a aucun zéro sur l'axe Re(s) = 1 (ce résultat est équivalent au théorème des nombres premiers voir section historique ci-dessous). Du coup, l'hypothèse de Riemann peut se reformuler ainsi : si 0 < Re(s) < 1 et si sest un zéro de ζ (ou, ce qui revient au même, de η), alors sa partie réelle vaut 1/2.

Historique de la conjecture

Article détaillé : Histoire de la fonction zêta de Riemann.

« […] es ist sehr wahrscheinlich, dass alle Wurzeln reell sind. Hiervon wäre allerdings ein strenger Beweis zu wünschen; ich habe indess die Aufsuchung desselben nach einigen flüchtigen vergeblichen Versuchen vorläufig bei Seite gelassen, da er für den nächsten Zweck meiner Untersuchung entbehrlich schien. »

« […] il est fort probable que toutes les racines soient réelles. Bien sûr, une démonstration rigoureuse en serait souhaitable ; pour le moment, après quelques vagues tentatives restées vaines, j'ai provisoirement mis de côté la recherche d'une preuve, car elle semble inutile pour l'objectif suivant de mes investigations. »

— énoncé par Riemann de l'hypothèse, dans l'article de 1859 ; Riemann y parle d'une fonction obtenue à partir de zêta, dont toutes les racines devraient être réelles plutôt que sur la ligne critique.

Riemann mentionna la conjecture, appelée plus tard « hypothèse de Riemann », dans son article paru en 1859, Sur le nombre de nombres premiers inférieurs à une taille donnée (Über die Anzahl der Primzahlen unter einer gegebenen Grösse en allemand), dans lequel il donnait une formule explicite pour le nombre de nombres premiersπ(x) inférieurs à un nombre donné x.

Cette formule affirme que les zéros de la fonction zêta contrôlent les oscillations des nombres premiers autour de leur position « attendue ». Riemann savait que les zéros non triviaux de zêta étaient distribués symétriquement autour de l'axe s = ½ + it, et aussi qu'ils devaient tous être dans la bande critique 0 ≤ Re(s) ≤ 1. Il vérifia que les premiers zéros avaient pour partie réelle exactement 1/2 (ce point sera discuté plus bas ; il s'agit bien d'une démonstration, et non d'un calcul numérique approché) et suggéra qu'ils pourraient bien être tous sur l'axe de symétrie (la ligne critique) Re(s)=1/2 ; c'est cette conjecture qu'on appelle l'hypothèse de Riemann.

En 1896, Hadamard et La Vallée-Poussin prouvèrent indépendamment qu'aucun zéro ne pouvait se trouver sur la ligne Re(s) = 1, et donc que tous les zéros non triviaux devaient se trouver dans l'intérieur de la bande critique 0 < Re(s) < 1. Ceci s'avéra être un résultat-clé dans la première démonstration complète du théorème des nombres premiers.

En 1900, Hilbert inclut l'hypothèse de Riemann dans sa célèbre liste de 23 problèmes non résolus : c'est le 8e problème. Il aurait dit à son propos : « Si je devais me réveiller après avoir dormi pendant mille ans, ma première question serait : l'hypothèse de Riemann a-t-elle été prouvée ? ».

En 1914, Hardy prouva qu'il y a une infinité de zéros sur la droite critique Re(s) = 1/2. Cependant il reste possible qu'il y ait une infinité de zéros non triviaux ailleurs. Des travaux ultérieurs de Hardy et Littlewood en 1921, puis de Selberg en 1942 ont donné une estimation de la densité moyenne de zéros sur la droite critique.

Des travaux plus récents se sont focalisés sur le calcul explicite d'endroits où se trouvent beaucoup de zéros (dans l'espoir de trouver un contre-exemple) et de placer des bornes supérieures sur la proportion de zéros se trouvant ailleurs que sur la droite critique (dans l'espoir de la réduire à zéro).

L'hypothèse de Riemann est l'un des sept problèmes de Hilbert non encore résolus, et fut d'ailleurs le seul problème de Hilbert choisi pour figurer dans la liste des problèmes du prix du millénaire de l'institut de mathématiques Clay.

Tests numériques

Dès l'énoncé par Riemann de la conjecture, des calculs numériques des premiers zéros non triviaux de la fonction permirent de la confirmer (on trouvera dans la table ci-dessous un exposé des divers résultats obtenus). Dans les années 1980, Andrew Odlyzko s'était spécialisé dans ce type de calcul, et on affirme ainsi généralement que le milliard et demi de zéros calculés par lui vérifient tousl'hypothèse de Riemann ; on pourrait penser que cela signifie seulement qu'ils sont positionnés assez près de la droite critique (au sens où l'imprécision de calcul ne permettrait pas d'exclure qu'ils peuvent y être exactement) ; il n'en est rien, comme on va le voir. Cependant, si on a une certitude mathématique pour, mettons, les premiers millions de zéros, la complexité (y compris informatique) des calculs rend plus relative la confiance qu'on peut avoir dans les derniers résultats ; cette question est soigneusement analysée par Xavier Gourdon 2004 (page 3, et plus précisément section 3.3.1) où il annonce le record de vérification des 1013 premiers zéros (et des tests statistiques sur des zéros bien plus éloignés encore).

Les méthodes de vérification numérique partent le plus souvent de la remarque selon laquelle la fonction :  a les mêmes zéros que zêta dans la bande critique, et qu'elle est réelle sur la droite critique (à cause de l'équation fonctionnelle vue plus haut reliant  et ). Il est alors facile de montrer l'existence d'au moins un zéro entre deux points de cette droite en vérifiant numériquement que cette fonction a des signes opposés en ces deux points. En pratique, on utilise la fonction Z (en) de Hardy et la fonction θ de Riemann-Siegel (en), avec :  ; en déterminant de nombreux intervalles dans lesquels Zchange de signe, on montre l'existence du même nombre de zéros sur la ligne critique. Pour contrôler l'hypothèse de Riemann jusqu'à une partie imaginaire T donnée, il reste à démontrer qu'il n'y a pas d'autres zéros dans cette région ; il suffit pour cela de calculer le nombre total de zéros dans la région en question (le rectangle de sommets 0,1, iT et 1+iT), ce qui peut se faire en appliquant le théorème des résidus à la fonction 1/ζ (techniquement, le problème d'éventuels zéros doubles fait qu'on utilise en réalité la fonction ζ'/ζ, même si une autre conjecture est qu'il n'en existe pas) : comme ce nombre doit être entier, un calcul numérique suffisamment précis de l'intégrale appropriée donne une certitude. La table suivante recense les calculs effectués jusqu'ici (lesquels, bien sûr, ont tous confirmé l'hypothèse) et donne des indications sur les méthodes utilisées.

Essais de démonstration

De nombreuses preuves supposées de l'hypothèse de Riemann sont régulièrement proposées, principalement sur Internet, ainsi que quelques infirmations, souvent le fait de mathématiciens en marge du système universitaire traditionnel. Aucun de ces travaux n'a pour le moment reçu l'assentiment de la communauté mathématique.

Dr. Karam Ouharou 

Comments

Popular posts