Les Gluons - Chromodynamique Quantique | Physique Théorique

Les gluons sont les bosons de jauge responsables de l'interaction forte.
Les gluons confinent les quarks ensemble en les liant très fortement. Ils permettent ainsi l'existence des protons et des neutrons, ainsi que des autres hadrons, et donc de l'univers que nous connaissons.

Caractéristiques de charge et masse des gluons

Leur charge électrique est nulle.

Ils possèdent un spin 1.

Chaque gluon porte une charge de couleur (rouge, vert ou bleu, comme les quarks), et aussi une anti-charge de couleur (comme les anti-quarks). Il y a 8 différentes sortes de gluons, en fonction de leur charge et de leur anti-charge de couleur.

Dans la théorie de la chromodynamique quantique (en anglais : quantum chromodynamics, ou QCD) utilisée aujourd'hui pour décrire l'interaction forte, les gluons sont échangés lorsque des particules possédant une charge de couleur interagissent. Lorsque deux quarks échangent un gluon, leur charge de couleur change ; le gluon se chargeant d'une anti-couleur compensant la perte du quark, de même que la nouvelle charge de couleur du quark. Étant donné que les gluons portent eux-mêmes une charge (et une anti-charge) de couleur, ils peuvent aussi interagir avec d'autres gluons, ce qui rend l'analyse mathématique de l'interaction forte très compliquée.

Preuve expérimentale

La première trace expérimentale des gluons a été découverte en 1979 dans l'accélérateur de particulesPETRA (collisions électron-positron) du laboratoire DESYà Hambourg, lorsque fut réalisée la preuve d'une collision à trois jets : le troisième jet fut ainsi attribué à l'émission d'un gluon par un des quarks produits.

Origine des gluons

Selon la théorie du Big Bang, l'Univers primordial était à une température et une pression telles que les quarks et les gluons devaient être totalement libres et donc indépendants (déconfinés). Cet état est dit plasma de quarks et de gluons (PQG). Puis, alors que ce plasma se refroidissait, les gluons ont pu confiner les quarksensemble, ce qui a permis l'existence des protons et des neutrons, ainsi que des autres hadrons. Une expérience de physique nucléaire et hadronique nommée ALICE vise à étudier ce plasma, pour mieux comprendre la chromodynamique quantique. Ce plasma sera produit au LHC ( Large Hadron Collider) du CERN, par collisions d’ions lourds (de plomb) à très haute énergie. Ces collisions devraient produire une température plus de 100 000 fois supérieures à celle qui règne au cœur du Soleil, ce qui devrait en quelque sorte faire « fondre » les protons et les neutrons de la matière, libérant les quarks de l’emprise des gluons et créant un état de la matière encore jamais observé : le plasma de quarks et de gluons.

Comments

Popular posts